< < E-NEF > >

Création de sites | Moniteurs | Chercher | Voyager | Cartes

()

Titre : Mathématiques et Grands Nombres.

Auteur : Emmanuel PIERRE

 

 

Tout ceux qui, un jour, ont eu à rendre un programme, ou pire à faire pour sa propre satisfaction, un programme utilisant des fonctions mathématiques utilisant des grands nombres, se sont peut-être heurtés au problème des limitations de type du Turbo Pascal. Grande nouveauté avec le Borland Pascal 7, le format COMP, mais les nombres sont encore très limités.

Suite à un projet de recherche de grands nombres premiers, qui sont tous positifs, car je ne parlerai que de grands nombres positifs, la première chose que mon binôme à faite, à été d'utiliser les listes, dont il avait l'habitude. Mais tout ceux qui sont habitués à utiliser le Pascal sur des stations VAX/VMS se retrouvent marris devant leurs pauvres PC quand ils s'aperçoivent de la terrible limitation de leur système en ressource dynamique : le Pascal ne désallouant pas après un appel ( j'envoie 2 listes, et j'en renvoie une dans la 1e i.e. NA := add( NA , NB ), l'ancien NA reste en mémoire ).

Dans ce cas-là, que faire ? Passer en mode protégé est une solution, mais quand on utilise des routines asm, tout recalculer c'est la galère... , ou tout bêtement créer de nouvelles fonctions de grands nombres.

C'est donc cette méthode que j'ai choisie pour contourner cet écueil, et dont la seule limitation était la mémoire dynamique du système ( on peut toujours y appliquer le mode protégé ). L'idée est simple, deux tableaux en l'occurrence pour une suite de fibonnacci, tous deux de 32000 cases de byte, puis créer de nouvelles fonctions d’addition, de soustraction... Avantage immédiat : une case de liste fait 5 byte, une de tableau 1, d'où un gain conséquent de mémoire.

Le type est défini juste ici :


type
	Numtab = array[1..32000] of byte;
		BIGnum = record
		t : ^numtab;
		s : integer;
	end;

Le record Bignum a deux champs, le premier T le pointeur sur tableau de byte, et le deuxième, la taille du nombre contenu dans T, très utile pour optimiser le calcul.

Pour les utiliser, on les crée par :

var NA : BIGnum; (* les définit *)
 
begin
	new(NA.T);(* crée ce nombre, A NE JAMAIS OUBLIER SOUS PEINE DE MORT *)
	init_BN(NA);(* on le met à 0 *)
	add_c(NA,2); (* on met 2 dans NA, c.f. plus loin... );
 
	release(NA.T);(* détruit NA *)
end;
 
Voyons les fonctions mathématiques de base :

On initialise en mettant des zéro partout et en mettant la taille à 0 :

procedure init_BN(var ptr:BIGnum);
(* Initialise un grand nombre a zéro *)
var i : integer;
begin
	for i := 1 to 32000 do
		ptr.t^ [i] := 0;
	ptr.s := 0;
end;

Renvoyer le plus grand est souvent nécessaire pour deux Integers :

 
function max(i,j:integer):integer;
(* Renvoie le plus grand des Integers *)
begin
	if i>j then 
		max := i
	else
		max := j;
end;

Il faut déjà implémenter une fonction pour savoir si on a affaire à un nombre nul, on sait jamais, mais ça va servir, je vous le promets :

 
function est_nul(NA:BIGnum):boolean;
begin
	est_nul := (NA.s=0) OR ( (NA.s=1) AND (NA.t^[1]=0) )
end;
 

Première procédure intéressante après l'initialisation, l'addition de base, c'est à dire celle de plus bas niveau, l'addition par une constante inférieure à 10. (C.f. cours de numération ). J'appelle par la suite BN un Big Number, un grand nombre.

 
procedure add_c(var NA:BIGnum;cst:byte);
var 
	ret : byte; (* la retenue *)
	i : integer; (* le compteur *)
	c : integer; (* le calcul intermédiaire *)
Begin
 
	ret := 0; (* pas de retenue au départ *)
	if not((cst=0) or est_nul(NA)) then (* zéros, rien a traiter *) 
		for i := 1 to na.s+1 do (* on va de 1 a n+1, en cas de retenue *)
		begin
 
			if i>1 then cst := 0; (* idiot, mais utile pour optimiser *)
 
			c := NA.t^[i] + (cst + ret); (* valeur actuelle plus cst si*)
						     (* premier rang, et retenue si il y a lieu *)
			ret := 0; (* on l'a utilisée, on la retire *)
 
			if (c>=10) then (* si il y a retenue dans notre calcul *)
			begin
				ret := 1; (* on la met pour le prochain tour *)
				c := c-10; (* on retire de c 10 *)
			end;
 
			NA.t^[i] := c;(* on met dans la position du BN, la valeur c*)
 
			if (ret=0) then (* plus de retenue, on peut sortir *)
				exit; (* allez, hop on sort, c'est fini *)
 
		end; (* fin du FOR BEGIN *)
 
		if (NA.t^[na.s+1]<>0) then inc(NA.s); (* si le BN a grandi *)
 
end;

Et maintenant l'addition complète :

procedure add(var NA, NB, ND : BIGnum);
var 
	ret : byte;
	i : integer;
	c : integer;
Begin
	ret := 0; (* pas de retenue *)
 
	if not(est_nul(NB) or est_nul(NA)) then (* des 0, on sort *)
	begin
		for i := 1 to max(NA.s,NB.s)+1 do(* on calcule au plus grand *)
						 (* des deux+1 si retenue *)
		begin
			c := NA.t^[i] + NB.t^[i] + ret;
			ret := 0;
			if c>=10 then
			begin
				ret := 1;
				c := c - 10;
			end;
			ND.t^[i] := c;
		end;
		if (ND.t^[i]<>0) then ND.s := i(* si il y a du monde en n+1 *)
		else if (i>1)and(ND.t^[i-1]<>0) then ND.s := i - 1;(* sinon*)
	end
	else
		ND:=NA; 
end;

Rien de bien nouveau et pas d'astuces, mais voyons la soustraction d'une constante :

 
procedure sous_c(var NA : BIGnum;cst : byte);
var 
	ret : byte;
	i : integer;
	c : integer;
Begin
 
	ret := 0; (* pas de retenue *)
 
	if not est_nul(NA)and(cst<>0) then (* si NA est nul, rien a faire *)
		for i := 1 to NA.s do
 
		begin
 
			if i>1 then cst := 0; (* c.f. add_c *)
 
			if (NA.t^[i]<(cst+ret)) and (i<na.s) then
 
			begin (* si on retire plus qu'il n'y a, retenue *)
 
				NA.t^[i] := 10 + NA.t^[i] - ( cst + ret );
				ret := 1;
 
			end
			else
			begin (* sinon simple soustraction, et fin de calcul *)
			      (* car plus rien a retirer*)
				NA.t^[i] := NA.t^[i] - ( ret + cst );
				ret := 0;
 
				if (na.s=i) then (* dernière case *)
					if (i>0) and (NA.t^[i]=0) then 
						dec(NA.s); (* si pas
 
				exit;
 
			end
		end;
 
	if (NA.t^[i]<>0) then NA.s := i (* si taille inchangée *)
	else if (i>1) and (NA.t^[i-1]<>0) then NA.s := i-1;(* sinon *)
 
end;

Ici une optimisation, renvoie le plus grand, comme on travaille seulement en nombres positifs, donc on soustrait le plus grand au plus petit :

function greater(NA,NB:BIGnum):boolean;
var i
	ret : byte;
	i : integer;
	c : integer;
Begin
 
	if NA.s>NB.s then (* on commence par regarder la taille *)
		greater:=true
	else if NA.s<NB.s then
		greater:=false
	     else (* et après comparaison case a case *)
		begin
			i:=max(na.s,nb.s); (* taille max *)
			while (NA.t^[i]=NB.t^[i])and(i>0) do (* boucle tant qu'egaux*)
			dec(i); (* sens décroissant, c'est plus rapide *)
			if (NA.t^[i]>=NB.t^[i]) then
				greater:=true
			else
				greater:=false;
		end;
 
end;

Et maintenant la soustraction, sous vos applaudissements:


procedure sous(var NA,NB,ND:BIGnum);
var 	ret : byte;
	i : integer;
	c : integer;
Begin
	ret := 0;
	if est_nul(NB) then
		ND:=NA
	else
		for i := 1 to max(na.s,nb.s) do (* le parcours *)
		begin
			if (NA.t^[i]< (NB.t^[i]+ret) ) then (* A<B+retenue *)
			begin
			 
				ND.t^[i] := 10 + NA.t^[i] - ( NB.t^[i] + ret );
				ret := 1;
				 
			end
			else (* A>B+retenue *)
			begin
				ND.t^[i] := NA.t^[i] - ( NB.t^[i] + ret );
				ret := 0;
				 
			end;
			 
		end;
		 
		if (ND.t^[i]<>0) then ND.s := i
		else if (i>1) and (ND.t^[i-1]<>0) then ND.s := i - 1;
		end;

Voyons maintenant d’autres fonctions plus diverses, par exemple pour savoir si il y a reste dans la division de A par B :


function modulozero(var NA,NB:BIGnum):boolean;
	var naa : BIGnum;
Begin
	new(NAa.t); (* on crée une nouvelle *)
	init_BN(NAa); (* on l'initialise *)
	add(NA,NAa,NAa); (* on met NA=NAa *)
	 
	while greater(NAa,NB) do (* puis on soustrait NB a Naa tant que *)
		sous(NAa,NB,NAa); (* Naa>NB *)
	 
	modulozero:= not (is_void(NAa));
	 
	dispose(NAa.t); (* on nettoie avant de quitter *)
end;

Et maintenant la division par 2, mon cours de numération me dit que diviser un nombre par 2, c’est trouver le nombre de 2 dans celui-ci, je vais donc soustraire (A div 2) fois le nombre 2 pour trouver A div 2 :


procedure div2(var NAA:BIGnum);
var 	t : BIGnum;
	m : longint;
	i : integer;
Begin
 
	m := 0;
	if (naa.s<=10) and (naa.t^[10]<=2) then
	begin (* taille < 10, on peut utiliser des longint, compat. tp6 *)
	 
		for i := naa.s downto 1 do
			m := m*10 + naa.t^[i]; (* on passe de BN a longint *)
		m := m div 2; (* on divise par 2 *)
		 
		init_BN(naa); (* on passe de longint a BN *)
		i := 0;
		while (m<>0) do
		begin
			inc(i);
			naa.t^[i] := m mod 10; (* on prend le dernier *)
			m := m div 10; (* et on le retire *)
		end;
		naa.s := i; (* on ajuste la taille *)
	end
	else (* on est condamne a des calculs très longs ... *)
	begin
		new(t.t);
		init_BN(t);
		 
		repeat
			sous_c(NAA,2); (* on retire 2 *)
			add_c(t,1); (* et on le comptabilise *)
		until (NAA.s<=2) and (NAA.t^[1]<=1) and (NAA.t^[2]=0);
		 
		init_BN(NAA);
		add(NAA,t,NAA); (* on renvoie t qui est naa div 2 *)
		 
		dispose(t.t);
	end;
	 
end;

Et après ça, il faut les afficher ces fichus nombres :

procedure show(ptr:BIGnum);
var 	i : integer;
	s : string;
begin
	 
	for i := ptr.s downto 1 do
	begin
		str(ptr.t^[i],s);
		affiche(s); (* on affiche un digit, une fonction de votre cru *)
	end;
	 
end;

Limitations :

Conclusion

Vous voici tout clef en main, vous n'avez plus qu'à faire du copié-collé ...

L'exemple est le programme FIB.EXE.

Bibliographie

Dr Dobb's #226 janvier 95, avec un article sur les grands nombres en C++.

Principes fondamentaux de l'informatique, Aho,J.Ullman ed.DUNOD que je vous recommande vivement.

Remerciements

HP Mâd, pour son cours d'assembleur Flash qui me " sert " de modèle,

Murdoc, mon binôme, qui malgré ses défauts n'en est pas moins sympa,

et Ecureuil pour ses conseils, et ses routines, sans qui certains de mes programmes ne seraient pas ce qu'ils sont.

Et toi, hypocrite lecteur, mon ami, mon frère. ( Baudelaire )
counter
&copy; Copyright 1998-1999 Emmanuel PIERRE. Libre reproduction sous Licence LLDDv1.
Pour tout commentaire, webmaster@e-nef.com
Dernière MaJ 05/02/2023

Valid XHTML 1.0!

No Patents/